Summer Block 1 Multiplication and division

Small steps

Step 1	Count in 2s
Step 2	Count in 10s
Step 3	Count in 5s
Step 4	Recognise equal groups
Step 5	Add equal groups
Step 6	Make arrays
Step 7	Make doubles
Step 8	Make equal groups - grouping

Small steps

Count in 2s

Notes and guidance

In this small step, children explore counting both forwards and backwards in 2 s. This builds on understanding from Autumn Block 2 , when children added 1 and 2 , as well as previous knowledge of doubles and finding 1 more and 1 less.

Begin by practically exploring counting in $2 s$ using things that come in pairs, such as socks and wheels on a bicycle. Number lines and a 1-50 number grid are useful representations that allow children to spot patterns when counting in 2 s . They should count both forwards and backwards in 2 s , but always starting from an even number.

Begin to introduce children to the language of multiplication, for example "There are \qquad equal groups of 2. There are
\qquad altogether." This will be built on in future steps.

Things to look out for

- Children may count the number of pairs, rather than count in 2 s .
- Make sure children understand that a pair is two objects, and those objects do not need to look exactly the same.
- Children may count each object in a group, rather than counting in 2 s .

Key questions

- How can you count the pairs?
- What pairs can you see/find?
- How can you use the number line/number grid to help you count in 2 s ?
- What patterns do you see when you count in 2 s ?
- When you count in $2 s$, what numbers will you say/not say?
- How many equal groups of 2 are there?

Possible sentence stems

- There are \qquad in each pair.
There are \qquad pairs.

There are \qquad in total.

- There are \qquad equal groups of 2
There are \qquad altogether.

National Curriculum links

- Count, read and write numbers to 100 in numerals; count in multiples of $2 s, 5 s$ and $10 s$

Count in 2s

Key learning

Put children into groups of 10 and give each child 2 cubes.

Ask each group to show you an even number of cubes.
Each child can either hold out zero or two cubes.
Get children to count the number of cubes individually. Then ask how many cubes each person has got. Then get children to count the number of cubes in 2 s .

Read Eggs and Legs by Michael Dahl. Pause partway through the book and ask children to draw a picture predicting what the legs could be doing on the next page. How many legs will there be? How many eggs will there be?

Show an estimation jar.
Ask children to estimate how many objects are inside.
Empty the jar and ask them to count the objects in 2 s to check.

- How many socks are there in total?

There are \qquad socks in total.

- Continue to colour in $2 s$ on the grid. What do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

- Complete the number lines by counting in 2 s .

Count in 2s

Reasoning and problem solving

Tiny is counting backwards in 2 s .

What mistake has Tiny made?

Sam counts back from 50 in 2 s . Max counts up from 12 in 2 s .

They say their numbers at the same time.

Who will say 30 first?

Max

Tiny said 27 rather than 28

Count in 10 s

Key questions

- When you count in 10s, what number comes after \qquad ?
- When you count in 10 s, what number comes before \qquad ?
- How many groups of 10 are there?

What number is this?

- How many groups of 10 are there in \qquad $?$
- If you count in 10 s from \qquad will you say \qquad ?
- Which digit stays the same/changes when you count in 10 s?

Possible sentence stems

- There are ___ groups of ten.

There are \qquad altogether.

- There are \qquad full ten frames. There are \qquad in total.

National Curriculum links

- Count, read and write numbers to 100 in numerals; count in multiples of $2 s, 5 s$ and $10 s$

Count in 10s

Key learning

Read Toasty Toes by Michael Dahl. Give children examples from the book, for example "Fifty toes wiggle in the water." Ask how many children there will be.

- A baker has made 3 trays of 10 bread rolls.

How many rolls are there in total?

- How many counters are there?

- How many flowers are there altogether?

There are \qquad flowers in each bunch.

There are \qquad bunches.

There are \qquad flowers altogether.

Give each child a 50-bead string and explain that they are going to use it to count in tens. Ask how they can use the bead string to count forwards and backwards in 10 s .
-

Fill in the empty ten frame.
How many counters are there now?

- Complete the number tracks.

Count in 10 s

Reasoning and problem solving

Tiny is counting back in 10s from 50

Which numbers will Tiny say?

How do you know that Tiny will say these numbers?

Ben and Kay count in 10 s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Ben starts at 10
Colour all the numbers that Ben will say.
Kay starts at 6
Circle all the numbers that Kay will say.
What do you notice about the numbers that they say?
What is the same and what is different?
coloured: 10, 20, 30, 40, 50
circled: 6, 16, 26, 36, 46

Count in 5s

Key questions

- Will you say ___ when you count in 5s? Why/why not?
- How many 5 s are there altogether?
- When you count in 5 s , what number comes after \qquad ?
- When you count in 5 s , what number comes before \qquad ?
- What patterns do you notice when you count in 5 5 ?
- What do you notice about counting in 5 s and counting in 10 s?

Possible sentence stems

- There are ___ groups of 5

There are \qquad altogether.

- There are \qquad 5s.

There are \qquad in total.

- There are \qquad $5 s$ in 10

National Curriculum links

- Count, read and write numbers to 100 in numerals; count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Count in 5s

Key learning

Read Starry Arms by Michael Dahl.

Ask children what they notice about the starfish.
How many starfish are there?
How many arms are there altogether?
Ask children to make their own Starry Arms page.

Choose a group of five children to come to the front of the class.
Ask the children to show two hands, one hand or no hands. Each child can choose to hold up both their hands, one hand or no hands.

The rest of the class say how many fingers they can see altogether.

As a further challenge, say a multiple of 5 and ask children to work together to show that number of fingers.

- How many fish are there?

There are \qquad fish in each tank.

There are \qquad tanks.

There are \qquad fish altogether.

- How many grapes are there?

- Continue to count in 5 s on the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

What patterns can you see?

Count in 5s

Reasoning and problem solving

Ann counts the number of fingers she can see.

She counts 20 fingers.
How many hands can she see?

Ron has some number cards.

Which numbers will Ron say?
How do you know?

Tiny makes a flower pattern with counters.

How do you know that Tiny is incorrect?

46 does not have a 0 or 5 in the ones column.

Recognise equal groups

Notes and guidance

In this small step, children begin by using stories that link to pictures and concrete resources to help support them in recognising equal groups. They recognise and explain how they know when there are equal groups and when there are not. In order to do this, children need to see lots of different examples of equal groups in different contexts, for example trays of buns or bunches of flowers.

It is important for children to see equal groups that are arranged differently, so they understand that groups can look different but still be equal in number. For example, 5 dots arranged as on a dice, 5 dots in a row close together and 5 dots spaced further apart are all groups of 5

Children can begin to explore ways of making unequal groups equal by adding to or removing from some of the groups.

Things to look out for

- If objects are arranged differently, children may not think that the groups are equal.
- Children may be less confident with more unfamiliar representations.

Key questions

- What does "equal" mean?
- How do you know that the groups are equal/unequal?
- Do the groups have to look exactly the same to be equal? Why/why not?
- How many equal groups are there? How many are there in each equal group?
- How can you make the groups equal?

Possible sentence stems

- There are \qquad equal groups of \qquad
- I know that the groups are equal/not equal because ...
- To make the groups equal, I could ...

National Curriculum links

- Solve one-step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Recognise equal groups

Key learning

Get children to collect some stones or pebbles.

Ask children to put them in equal or unequal groups.
How many different equal groups can they make?

Give children 12 counters.
Can they show you equal and unequal groups?
How many different equal groups can they make?
What happens if they have 13 or 15 counters?

In pairs, children take turns to roll two dice.
The first player to identify equal groups and correctly shout "equal" gets a point.

The winner is the first player to reach 5 points.

- Are the groups equal or unequal?

- Complete the sentence to match the picture.

There are \qquad equal groups of \qquad pencils.

- Dan is drawing equal groups of 3

Finish his drawing.

Recognise equal groups

Reasoning and problem solving

Add equal groups

Notes and guidance

In this small step, children use their knowledge from previous learning of recognising equal groups to now add equal groups together to find a total.

Children focus on counting equal groups of 2,5 , and 10 and explore this within 50 . They move on to identifying and recording the number sentence to match the groups. For example, show children 5 pairs of socks and allow them to represent them in a different way, such as with counters, then encourage them to write the number sentence to represent it: $2+2+2+2+2=10$ At this point, children do not need to use the multiplication symbol and should record number sentences as repeated additions. However, they should be exposed to the language of multiplication, for example "There are 5 equal groups of 2 , so there are 10 in total."

Things to look out for

- Children need to be secure in recognising equal and unequal groups.
- Children may confuse the number of groups with the amount in each group, for example 2 groups of 5 rather than 5 groups of 2

Key questions

- Are the groups equal? How do you know?
- How many \qquad are there in each group?
- How many equal groups can you see?

What can you use to show this?

- How many are there altogether?

How can you write this as a number sentence?

Possible sentence stems

- There are \qquad equal groups.
There are \qquad in each group.

There are \qquad altogether.

- There are ___ groups of \qquad
\qquad $+$ \qquad $+$ \qquad $+$ \qquad
\qquad = \qquad

National Curriculum links

- Solve one-step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Add equal groups

Key learning

Ask two children to show a total of three hands Ask how many fingers there are altogether and record the addition.

Repeat with different numbers of hands.

Ask children to line up some bikes or scooters. As a class, count how many bikes/scooters there are.

Ask how many wheels there are altogether. Encourage children to write the number sentence to match the bikes.

Hide some pictures of ladybirds around the playground. Each ladybird must have 2, 5 or 10 spots. When each child has found a ladybird, they need to find other children who have a ladybird with the same number of spots. They then add their equal groups together to find the total number of spots.

- How many apples are there?

Use ten frames and counters to help you complete the sentences.
$10+10+10=$ \qquad
There are \qquad apples altogether.

- How many fish are there?

\qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad

There are \qquad fish in total.

Arrange the counters into equal groups.
Write the number sentence to match your groups.

Add equal groups

Reasoning and problem solving

What mistake has Max made?
No

Ron and Sam bake these cakes.
They put them into equal groups.

Who do you agree with?
Explain your answer.

Both children are correct.

Make arrays

Notes and guidance

In this small step, children use their knowledge of recognising and adding equal groups to arrange objects in columns and rows as arrays. This arrangement helps children to see the equal amounts and how they are grouped.

An effective way to introduce arrays to children is by using real-life examples such as bun trays and egg boxes that have these patterns already built in.

Once they are confident with describing given arrays, encourage children to build and draw their own arrays to represent a story. They may begin to explore the fact that they can describe arrays in two ways, for example 3 rows of 2 and 2 columns of 3

Children could continue to practise writing repeated addition number sentences to describe the arrays.

Things to look out for

- Children may confuse the language of column and row.
- Children may not arrange the rows or columns evenly, or leave a gap in the middle of the array.
- Children may not recognise that any objects or pictures can be an array.

Key questions

- What is a column? Can you show me a column in the array?
- What is a row? Can you show me a row in the array?
- How many equal rows/columns are there?

How many are there in each row/column?
How many are there altogether?

- How can you write a number sentence to match the array?

Possible sentence stems

- There are \qquad rows.
There are \qquad in a row.

There are \qquad in total.

- There are \qquad columns.

There are \qquad in a column.

There are \qquad altogether.

National Curriculum links

- Solve one-step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Make arrays

Key learning

Use cubes and a range of containers such as bun trays, egg boxes and paint pallets.

Allow children to explore using the cubes and discuss all the different ways to fill the containers.

There are \qquad rows/columns.

There are \qquad cubes in each row/column.

- Use counters to make an array that matches the apples.

Complete the sentences.
There are \qquad apples in each row.

There are \qquad rows.

There are \qquad apples altogether.

- Here are some arrays.

- Count the rows and complete the sentences to describe each array.
There are \qquad rows of \qquad
There are \qquad altogether.
- Count the columns and complete the sentences to describe each array.

There are \qquad columns of \qquad
There are \qquad altogether.

What do you notice?

- Draw an array to match the story.

```
There are 5 trees.
There are 2 birds in each tree.
```

Write a number sentence to match your array.

Make arrays

Reasoning and problem solving

Tom and Fay are making arrays with 14 counters.

What mistake has each child made?
Make an array with 14 counters.

2×7 or 7×2 array

Kay has started to make an array using 40 counters.
Finish making Kay's array.

Write two number sentences to describe your array.

$$
\begin{aligned}
& 10+10+10+10=40 \\
& 4+4+4+4+4+4+4+4+4+4=40
\end{aligned}
$$

Kim and Mo write number sentences to match the array.

Kim

Mo

Who is correct?
Explain your answer.

They are both correct.

Make doubles

Notes and guidance

In this small step, building on learning from Spring Block 2, children again explore doubles. They progress from describing doubling as the addition of the same amount to describing it as 2 equal groups, linking to the work done on multiplication in this block so far. They should now be more confident with doubling numbers up to 20
Give children opportunities to build doubles and explain what a double is using real objects, mathematical equipment and pictures. This will help to reinforce understanding of a double being 2 groups of a number. Encourage children to say doubles as they build them, for example "Double \qquad is \qquad ." They can use repeated addition to represent doubles in the abstract. Give children opportunities to look at representations and decide whether they show doubles or not.
Now that children have explored numbers to 50 , they could also start to explore doubles beyond 20, for example double 12 or double 20

Things to look out for

- Children may not make/draw 2 equal groups.
- Children may think that double 4 is 44 , because they see the digit twice.

Key questions

- What is double \qquad ?
- How can you show me double \qquad ?
- Is this a double? How do you know?
- How many equal groups are there? How many are there in each group? How many are there altogether?
- Is double \qquad equal to \qquad ? How do you know?

Possible sentence stems

- Double \qquad is \qquad
\qquad
$+$ \qquad $=$ \qquad
- This is double \qquad - \qquad is/is not a double. I know this because ...

National Curriculum links

- Solve one-step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Make doubles

Key learning

Show children a number of counters up to 10 on ten frames.

Ask children to make the double with double-sided counters on two ten frames.

Hide lots of number pieces outside. Children work in pairs to find two number pieces that are the same to make a double. The winners are the pair who find the most doubles.
 Children could be challenged to write their doubles as number sentences.

Read Minnie's Diner by Dayle Ann Dodds, where all the food orders are doubled. Set up a double cafe in the classroom. Encourage children to make up their own double diner menus.

If you get 8 specials, what have you doubled?

- Complete the sentences to match the picture.

- Complete the sentences to match the array.

\qquad $+$ \qquad
\qquad
Double \qquad is \qquad
- Use the ten frames to work out double 12

Make doubles

Reasoning and problem solving

Make equal groups - grouping

Notes and guidance

In this small step, children build on their knowledge of recognising equal groups to begin to explore division through grouping. This is the first time that they are explicitly introduced to the idea of division.

Children start with a given total and make groups of an equal amount. Give them opportunities to make groups with concrete resources. Circling groups when using pictures can also help them to see the groups and identify if they are equal. Further develop children's understanding of equal groups by exposing them to numbers that do not group equally.
At this stage, children do not need to be introduced to the division symbol, but they should become familiar with the language of division, for example "There are \qquad groups of
\qquad in \qquad ."

Things to look out for

- When dividing, children may be more familiar with sharing from real-life experiences and may therefore confuse sharing with grouping.
- Children may be confused by groups that do not look similar, but they should be encouraged to focus on how many are in each group.

Key questions

- Are the groups equal? How do you know?
- Do the groups have to be the same size/shape/pattern to be equal?
- How many \qquad are there altogether?
How many are there in each group?
How many groups are there?
- How many different ways can you put the \qquad into equal groups?

Possible sentence stems

- The groups are equal/not equal because ...
- There are \qquad altogether.

They can be put into equal groups of \qquad There are \qquad groups.

National Curriculum links

- Solve one-step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Make equal groups - grouping

Key learning

Take children into the playground. As a class, count how many children there are.

Ask children to get into groups of three. Are all the groups equal?
What other equal groups can they get into?

Provide children with 20 counters or cubes. Ask them to put them into equal groups. How many different sets of equal groups can they make?

Repeat with other numbers of counters or cubes.

Show children a picture of a gingerbread person and explain that each one needs three buttons.

Give the children 15 buttons and ask how many gingerbread people they can give buttons to.
What if they had 18/21/24 buttons?

- Circle groups of 2 mittens and complete the sentence.

There are \qquad groups of 2 mittens.

If you had 10 mittens, how many equal groups of 2 mittens could you make?

- Complete the sentences to match the pictures.
-

There are \qquad altogether.

There are \qquad equal groups of \qquad
-

\qquad has been sorted into \qquad equal groups of \qquad

- Draw a picture to match the sentence. 20 has been sorted into 4 equal groups of 5

Make equal groups - grouping

Ben and Tom each have the same number of sweets.

Ben has 8 equal groups of 2
Tom puts his sweets into equal groups
Here are some groups of cubes.

Do you agree with Sam?
of 4
How many equal groups of sweets does Tom have?

Make equal groups - sharing

Notes and guidance

In this small step, children explore division in the form of sharing.
Children first explore this practically using concrete resources and physically sharing them into groups. They should see that each group will then have the same amount. At this stage, children do not need to write number sentences using the division symbol, but they should be encouraged to explain what is happening using the language of division, for example "There are \qquad counters shared equally into \qquad groups.
There are \qquad in each group."

It may be helpful to explore the similarities and differences between sharing and grouping, once children are confident with the two structures separately.

As an extension, children can look at situations where the objects cannot be shared equally and there are some left over.

Things to look out for

- Having just explored grouping in the previous step, children may confuse that knowledge with the new learning on sharing.
- When sharing, children may miss out some objects or place too many in one group.

Key questions

- What does "sharing" mean?

What does "sharing equally" mean?

- How many \qquad are there altogether?
How many equal groups are you sharing them into? How many are there in each group?
Are there any left over?
- Can you share the \qquad into any other number of equal groups?

Possible sentence stems

- The \qquad have/have not been shared equally.

I know this because ...

- There are \qquad altogether.
They are shared equally between \qquad groups.

There are \qquad in each group.

National Curriculum links

- Solve one-step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Make equal groups - sharing

Key learning

Take children outside to collect 12 sticks or pebbles. Ask them to share their items equally between 3 hoops.

Can they share them equally between $2 / 4 / 6$ hoops? Can they share them equally between $5 / 7$ hoops? Repeat for other numbers.

Provide modelling clay to represent cupcakes and counters to represent sweets.
Children can then explore different ways of decorating the cupcakes.

Tell children to make 3 cupcakes. Give them 15 sweets to share equally between the 3 cupcakes. Ask how many sweets there are on each cupcake.
Repeat for different numbers of cupcakes and sweets.

- Share the muffins equally between the 2 plates.

Complete the sentences.
There are \qquad muffins.

They are shared equally between \qquad plates.

There are \qquad muffins on each plate.

- Share the apples equally between the 3 boxes.

Complete the sentences.
\qquad apples are shared equally between \qquad boxes.

There are \qquad in each group.

- Fay has 16 bananas.

She shares them equally between 4 people.
How many bananas does each person get?

Make equal groups - sharing

Reasoning and problem solving

Tiny makes some groups of apples.

10 shared between 3 is 4

Do you agree with Tiny?
Explain your answer.

Dan shares 20 cookies equally between his friends.
How many friends could Dan share his cookies between?

No
No
$\longrightarrow-2$

$1,2,4,5,10$ or 20 people

Mo has 10 apples.

How many apples will there be in each bag if Mo shares them equally?

He shares the apples between 10 bags.

He shares the apples between 5 bags.

He shares the apples between 2 bags.

He puts all the apples into 1 bag.

What do you notice?

1

2

5

10

