Summer Block 3 Decimals

Small steps

Step 1 Use known facts to add and subtract decimals within 1

Step 2	Complements to 1
Step 3	Add and subtract decimals across 1
Step 4	Add decimals with the same number of decimal places
Step 5	Subtract decimals with the same number of decimal places
Step 6	Add decimals with different numbers of decimal places
Step 7	Subtract decimals with different numbers of decimal places

Small steps

Step 9 Decimal sequences

Step 10 Multiply by 10, 100 and 1,000
Step 11 Divide by 10,100 and 1,000
Step 12 \quad Multiply and divide decimals - missing values

Notes and guidance

In this small step, children add and subtract decimals within 1 whole using known facts. They will move on to using a formal method to add and subtract decimals later in this block. Through unitising, children are able to make connections between whole numbers and decimals. For example, 7 ones +9 ones $=16$ ones, therefore 7 hundredths + 9 hundredths $=16$ hundredths. Ensure that children have a good understanding of place value, as a common error is to ignore the place value of decimals, leading to incorrect calculations such as $0.48+0.3=0.51$. Using a stem sentence allows children to recognise that the unit they are adding or subtracting must be the same, so in this example 48 hundredths +30 hundredths $=78$ hundredths. Hundred squares and place value charts are useful representations to support children when adding and subtracting decimals within 1 whole.

Things to look out for

- Children may add digits together irrespective of which place value column they are in, e.g. $0.45+0.3=0.48$
- Children may rely on using formal written methods to add/ subtract decimals within 1 instead of using known facts.

Key questions

- How can you use the hundred square to help you with the addition/subtraction?
- What whole number calculation can you compare this calculation to?
- How can you convert between tenths and hundredths?
- Which known facts can help you with this calculation?
- What is 1 hundredth more than your number?
- What is 2 tenths less than your number?

Possible sentence stems

- \qquad tenths = \qquad hundredths
- \qquad ones + \qquad ones = \qquad ones,

SO \qquad tenths + \qquad tenths $=$ \qquad tenths

- \qquad hundredths - \qquad hundredths = \qquad hundredths

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Use known facts to add and subtract decimals within 1

Key learning

- Complete the sentences.
- Each square in this hundred square represents 1 whole.

\qquad ones + \qquad ones = \qquad ones
\qquad $+$ \qquad
\qquad

Each square in this hundred square represents one-hundredth of the whole.

\qquad hundredths + \qquad hundredths =
\qquad hundredths
\qquad $+$ \qquad $=$

What is the same and what is different about the hundred squares?

- Use a hundred square to work out the calculations.
- Here is a number.

Ones	Tenths	Hundredths
	$0(1)$	0
	010	0

- What is 3 tenths less than this number?
- What is 0.02 more than this number?
- Max uses known facts to complete the subtraction.

$$
86-24=62, \text { so } 0.86-0.24=0.62
$$

Use known facts to work out the calculations.

- $0.89-0.41$
- $£ 0.45-£ 0.27$
- 37 hundredths more than 14 hundredths
- 72 hundredths - 19 hundredths
- Mo and Dora are working out 0.76-0.3

Who is correct?
How do you know?

Use known facts to add and subtract decimals within 1

Reasoning and problem solving

Complements to 1

Notes and guidance

In this small step, children find complements to 1 for numbers with up to 3 decimal places.

It is important for children to see the links with number bonds to 10,100 and 1,000 , and it may be useful to revise these first. The use of ten frames and hundred squares can support children to see the number bonds to 10 and 100 and the corresponding number bonds to 1 for numbers with 1 or 2 decimal places respectively. The number bonds to 1,000 and corresponding 3 -decimal place bonds to 1 can be more challenging, but children should be encouraged to apply the same principles as for numbers with fewer decimal places.

Things to look out for

- When finding a complement to 1 , children may assume that they need to find the bond to 10 in each place value column, for example $0.365+0.745=1$
- Children may try to use a formal written method to find complements to 1 instead of using known number bonds.

Key questions

- What number bonds can you use to help you?
- What is the missing number in $64+$ \qquad $=100$?
How does this help you to work out the missing number in 0.64 + \qquad $=1$?
- What do you need to add to \qquad to make 10/100/1,000? So what do you need to add to \qquad to make 1?
- What is the same and what is different about finding complements to $10 / 100 / 1,000$ and complements to 1 ?

Possible sentence stems

- $1=$ \qquad tenths $=$ \qquad hundredths = \qquad thousandths
- \qquad ones + \qquad ones $=10$ ones,

SO \qquad tenths + \qquad tenths $=10$ tenths $=1$

- \qquad hundredths/thousandths + \qquad hundredths/thousandths = 1

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Complements to 1

Key learning

- Each square in the ten frame represents 1 tenth.

The ten frame represents 1 whole.
Complete the statements.

3 tenths + \qquad tenths $=10$ tenths

10 tenths $=1$ whole
\qquad + \qquad $=1$

Use a ten frame to complete the calculations.

- $0.8+$ \qquad $=1$
- $1=$ \qquad $+0.4$
- 0.1 + \qquad = 1
- $1=0.5+$ \qquad
- Each square in the hundred square represents 1 hundredth of the whole.
Use the hundred square to complete the calculations.

- $0.55+$ \qquad $=1$
- $1=0.32+$ \qquad
- $0.11+0.5$ + \qquad $=1$
- Jack is working out $0.763+$ \qquad $=1$

$$
763 \text { ones }+237 \text { ones }=1,000 \text { ones, }
$$

so 763 thousandths +237 thousandths $=1,000$ thousandths.

$$
0.763+0.237=1
$$

Use Jack's method to complete the calculations.

- 0.356 + \qquad $=1$
- $1=0.873+$ \qquad
\qquad $+0.456=1$ \qquad $+0.048$
$>$
- 1 =
- Complete the calculations.
- 0.3 + \qquad $=1 \vee 0.35+$ \qquad $=$ $0.399+$ \qquad $=1$

What is the same and what is different?

- Complete the part-whole models.

Complements to 1

Reasoning and problem solving

Tiny is working out the missing number.

Max, Mo and Annie are baking.
They have 1 kg of flour between them.

What is the mass of the flour that will be left over?

Give your answer in kilograms.
Compare methods with a partner.

Notes and guidance

In this small step, children add and subtract decimals that cross 1

For some numbers, using known facts is again a useful strategy, for example $6+7=13$, so $0.6+0.7=1.3$. Children can also use their experience from the previous step of finding complements to 1 , using the "make 1 " strategy to help them add and subtract. This requires a secure understanding of flexible partitioning, which allows them to partition decimals into appropriate numbers. For example, when calculating $0.64+0.45$, children can use their knowledge of finding complements to $1: 0.64+0.36=1$, therefore 0.45 should be partitioned into 0.36 and 0.09 , leading to $0.64+0.36=1$ and $1+0.09=1.09$. Part-whole models or other diagrams can be used to support this. Similarly, when subtracting decimals, encourage children to subtract to get to 1 first, then subtract the remaining decimal.

Things to look out for

- Children may make place value errors, for example using $6+7=13$ to deduce $0.6+0.7=0.13$
- Children may make errors with complements to 1 by looking at columns individually, for example thinking that adding 0.38 to 0.72 makes 1

Key questions

- How could partitioning one of the numbers help you?
- How do you decide which number to partition?
- How could you partition this number to help find a complement to 1? What number is left?
- How can you use your number bond knowledge to help you?
- What is the same and what is different about crossing 1 when adding and subtracting decimals?

Possible sentence stems

- \qquad can be partitioned into \qquad and \qquad
- The first number is \qquad away from 1
The second number can be partitioned into \qquad and \qquad
The total is $1+$ \qquad $=$ \qquad
- I can subtract \qquad to get to 1 and then subtract \qquad from 1

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Add and subtract decimals across 1

Key learning

- Huan is using ten frames to work out $0.7+0.5$

$$
\begin{aligned}
0.7+0.3 & =1 \\
1+0.2 & =1.2 \\
0.7+0.5 & =1.2
\end{aligned}
$$

Use Huan's method to work out the additions.

$$
0.8+0.6
$$

- Dani is finding a complement to 1 to work out $0.45+0.67$

Use Dani's method to work out the additions.
$0.74+0.78$

$$
0.74+0.42
$$

- Kim uses partitioning to work out $1.3-0.8$

Use Kim's method to work out the subtractions.

$$
\begin{array}{l|l|l|l}
1.1-0.4 & 1.24-0.59 & 1.36-0.48
\end{array}
$$

Add and subtract decimals across 1

Reasoning and problem solving

You need a partner and a 6 -sided dice for this game.

Take turns to roll the dice twice and create a decimal number less than 1 using the digits you rolled.

Repeat to create a second number.
Add your two numbers together.
Repeat until you have each added four numbers.

The winner is the person whose total is the closest to 1.5 without going above 1.5

Compare

strategies as
a class.

Add decimals with the same number of decimal places

Notes and guidance

In this small step, children add decimal numbers with the same number of decimal places, using the formal written method for the first time.

Children begin by looking at calculations with no exchanges before moving on to calculations that involve exchanges and numbers with up to 3 decimal places. Place value charts and counters are extremely helpful in ensuring that children understand the value of each digit and when an exchange is needed. When there are 10 or more in a place value column, children can physically exchange, for example, 10 tenths for 1 whole. They could also compare using column methods for integers and decimals, for example comparing $46+38$ with $4.6+3.8$

Children also perform decimal calculations with money, converting amounts in pence to pounds if necessary.

Things to look out for

- Children may not line up the columns correctly, particularly if the calculation involves zero as a placeholder.
- Children may position the decimal point incorrectly.
- Children may forget to add the exchanged digit.

Key questions

- How can you represent this calculation using a place value chart?
- What happens when there are 10 or more counters in a place value column? What is the same and what is different in the formal written method?
- Why is the position of the decimal point important?
- Why is it important to line up the columns?
- Will this addition involve an exchange? How do you know?

Possible sentence stems

- \qquad ones + \qquad ones = ones,
so \qquad tenths + \qquad tenths = \qquad tenths
- The greatest number I can have in any column is \qquad -
If the total is greater than \qquad I need to make an \qquad

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Add decimals with the same number of decimal places

Key learning

- Use the place value chart and the column method to work out $3.42+4.14$

Use place value charts and the column method to work out the additions.

$$
4.13+2.45
$$

```
3.146 + 1.513
```

$4.054+3.624$

- Use the place value chart and the column method to add 2.83 and 4.41

Use place value charts and the column method to work out the additions.

$$
4.7+3.6
$$

$$
3.29+4.65
$$

$$
8.714+2.613
$$

$$
15.86+13.48
$$

- Use the column method to work out the additions.

- Filip buys a hat and a scarf.

How much does it cost him altogether?

- Aisha buys three of these items.

What is the most she could pay? What is the least she could pay?

Add decimals with the same number of decimal places

Reasoning and problem solving

Use the digit cards to complete the column addition.

You may use each digit only once in each addition.

What is the greatest possible sum?
What is the smallest possible sum? Is there more than one way of creating each total?
greatest:
18.39
smallest:
1.59

Notes and guidance

In this small step, children subtract numbers with the same number of decimal places, using the formal written method for the first time. As with addition, children first look at calculations with no exchanges, before moving on to calculations that involve exchanges and numbers up to 3 decimal places. Place value charts and counters continue to support understanding of the value of each digit and when an exchange is needed. Again, children should look at the formal and practical methods alongside each other to begin with. When an exchange is needed, children can physically exchange, for example, 1 one for 10 tenths. They could also compare using column methods for integers and decimals, for example comparing 76-28 with 7.6-2.8

Give children opportunities to apply subtraction to real-life contexts, for example using measures and money.

Things to look out for

- Children may not line up the columns correctly, particularly when zero is used as a placeholder.
- When subtracting using the column method, children may just find the difference between the digits, rather than making an exchange when necessary, for example $4.5-3.8=1.3$

Key questions

- What are \qquad ones/tenths/hundredths subtract \qquad ones/tenths/hundredths?
- Will you need to make an exchange in this subtraction? How do you know?
- What can you exchange 1 one/tenth/hundredth for?
- Why is the position of the decimal point important?
- What does zero in a place value column mean? How does this affect a subtraction?

Possible sentence stems

- \qquad ones/tenths subtract \qquad ones/tenths is equal to ___ ones/tenths.
- I need to make an exchange because ...
- I need to exchange 1 \qquad for 10 \qquad

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Subtract decimals with the same number of decimal places

Key learning

- Use the place value chart and the column method to work out 4.23-2.12

Did you need to make any exchanges?

- Use the place value chart and the column method to work out 6.35-4.83

Will you need to make any exchanges?

Use a place value chart and a column method to work out the subtractions.

$$
5.7-2.4
$$

$8.313-2.614$
$13.24-12.06$

- Use the column method to work out the subtractions.

- Tom has $£ 12.45$

He buys a football for $£ 6.99$
How much money does he have left? Compare methods with a partner.

- Annie and Amir are doing a sponsored bike ride. Annie cycles 8.47 miles.
Amir cycles 5.95 miles.
How much further does Annie cycle than Amir?

Subtract decimals with the same number of decimal places

Reasoning and problem solving

Dexter and Nijah have some money.
Dexter has $£ 3.45$ more than Nijah.

They have $£ 12.45$ altogether.
How much money does Nijah have?

In the number pyramid, each number is the sum of the two numbers below it.

11.32
8.07
1.12
$4.88 \quad 1.07 \quad 0.05$

Add decimals with different numbers of decimal places

Notes and guidance

In this small step, children extend their knowledge of adding decimal numbers to include numbers with a different number of decimal places.

Emphasise the importance of lining up the decimal point in order to ensure that digits with the same place value are also aligned. A place value chart is a useful representation to reinforce this, as children can see the value of each digit in the correct place value column. Children could be encouraged to "fill" empty columns with trailing zeros to promote an understanding of using the zero as a placeholder and making it easier to see how the numbers line up.

Children could also use estimation to think about whether their answers are sensible.

As in previous steps, it may be useful to begin with examples that do not require an exchange, so that children can focus on the new learning of adding numbers with a different number of decimal places.

Things to look out for

- Children may not line up digits correctly.
- Children may put trailing zeros in the wrong place, for example writing 8.6 as 8.06 instead of 8.60

Key questions

- How can you show this addition on a place value chart?
- What happens when there are 10 or more counters in a place value column?
- Why is the position of the decimal point important?
- Why is it important to line up the columns?
- Will this addition involve an exchange? How do you know?
- What could you add to the spaces that do not contain a digit, to help you?

Possible sentence stems

- When adding two decimal numbers, I need to keep the
\qquad in line.
\qquad tenths + \qquad tenths = \qquad tenths, so I do/do not need to make an exchange.

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Add decimals with different numbers of decimal places

Key learning

- Use the place value chart and column method to work out $1.3+3.52$

Work out the additions.

- $5.7+3.16$
- $2.017+3.5$
$4.61+3.372$
- Use the place value chart and column method to work out $1.281+2.54$

Work out the additions.

- $4.7+3.56$
- $2.8+1.317$
- $3.595+4.62$
- Use the column method to work out the additions.

- Complete the bar model.

- Sam is cycling in a race.

She has cycled 3.145 km and has 4.1 km left to cycle.
What is the total distance of the race?

- Work out the additions.

$$
0.63 \text { litres + } 0.8 \text { litres }
$$

$$
6.3 \mathrm{~kg}+2.75 \mathrm{~kg}
$$

$$
5.173 \mathrm{~km}+4.08 \mathrm{~km}
$$

Add decimals with different numbers of decimal places

Reasoning and problem solving

Tiny is working out
$4.144+1.4$
What mistake has Tiny made?
What is the correct answer?

5.544

Find a solution to the addition with:

- no exchanges
- 1 exchange
- 2 exchanges

multiple possible answers, e.g.
$1.15+2.528 \quad 2.28+1.398 \quad 2.79+0.888$

Write the additions in the correct columns in the table.

$9.99+1$
$9.99+0.001$

$$
9.99+0.01
$$

No exchange	Exchange in ones column	Exchange in tenths column	Exchange in hundredths column	Exchange in thousandths column

Some additions may go in more than one column.
Add two more additions to each column, where the numbers have a different number of decimal places.

no exchange: $9.99+0.001$	tenths column:
ones column: $9.99+1$,	$9.99+0.1,9.99+0.01$
$9.99+0.1,9.99+0.01$	hundredths column:
	$9.99+0.01$

Subtract decimals with different numbers of decimal places

Notes and guidance

In this small step, children extend their knowledge of subtracting decimal numbers to include numbers with a different number of decimal places.
It is important that children continue to practise lining up the decimal point carefully and ensure that each digit is in the correct column. A place value chart could be used to reinforce this. In the column method, show children how to "fill" empty columns with zeros, which will support them when exchanges are required. They need to be secure with the fact that, for example, 6 and 6.0 have the same numerical value, as do 4.7 and 4.70 and so on.
Children need a good understanding of column subtraction from previous steps, knowing when to make an exchange - particularly when zeros are involved.

Things to look out for

- Children may not line up digits correctly.
- In calculations such as 7.6-2.38, children may subtract where there are pairs of numbers but just write the last digit, giving the answer of 5.38 , instead of writing $7.60-2.38$ and making an exchange.
- Children may struggle when multiple exchanges are required, for example 13-2.532

Key questions

- How should the digits be lined up in a column subtraction?
- How do you show that there is nothing in a place value column?
- Do you need to make an exchange? How do you know?
- How do you make an exchange if there is a zero in the column that you want to make the exchange from?
- Is the column subtraction method the most efficient method to use in this example?

Possible sentence stems

- When subtracting two decimal numbers, I need to keep the
\qquad in line.
- If I need to subtract hundredths and there is no digit in the hundredths column, I can put in a \qquad and then make an \qquad

National Curriculum links

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- Solve problems involving number up to 3 decimal places

Subtract decimals with different numbers of decimal places

Key learning

- Alex is using a place value chart and column subtraction to work out 4.54-1.4

Use place value charts and the column method to work out the subtractions.

- Teddy is using a place value chart and column subtraction to subtract 4.23 from 6.5

Why can Teddy write 6.5 as 6.50 ?
Complete the calculation using place value counters to help you.

- Use the column method to work out the subtractions.

- Eva buys a bag of apples costing $£ 4.27$

She pays with a $£ 10$ note.
How much change does she get?

- Work out the subtractions.
(5,000 g-3,200 g= \qquad $\mathrm{g}>5 \mathrm{~kg}-3.2 \mathrm{~kg}=$ \qquad kg
- $450 \mathrm{~cm}-255 \mathrm{~cm}=$ \qquad cm - $4.5 \mathrm{~m}-2.55 \mathrm{~m}=$ \qquad m
- $550 \mathrm{ml}-60 \mathrm{ml}=$ \qquad ml - $0.55|-0.06|=$ \qquad 1

Subtract decimals with different numbers of decimal places

Reasoning and problem solving

The shape is made of two
identical rectangles.
2.845 cm

Notes and guidance

In this small step, children explore a range of different calculation strategies to solve addition and subtraction problems, making decisions about which strategy would be the most effective for each problem.
Encourage children to consider the question carefully rather than automatically choosing the same option every time. They can experiment by solving the same calculation in a number of ways and considering which way was the most efficient and why. In particular, discuss when mental strategies are more appropriate than written, for example when compensation can be used, such that adding 9.99 can be simplified to add 10 and then subtract 0.01. Number lines are useful to support this approach.

Things to look out for

- Children may automatically use formal written methods, even when they are less efficient.
- Children may not transfer strategies used with integers to decimals without explicit teaching.
- When working mentally, children may make place value errors.

Key questions

- Do you need to make an exchange?
- What methods could you use?

Which is most efficient for this calculation?

- When would you use a mental method?
- When would you use an informal jotting such as a number line?
- When would a formal method be more efficient?
- What integer is 9.9 close to?

How can this help with the calculation?

- How could partitioning help with this calculation?

Possible sentence stems

- \qquad is close to \qquad , so I can change the calculation
to \qquad
- I will work this out using \qquad because ...

National Curriculum links

- Solve problems involving number up to 3 decimal places

Key learning

- Dani uses a place value chart and a written method to work out $43+1.45$

Could Dani have worked the answer out using a mental method? Which of these calculations could you work out mentally?
For which calculations would you use a written method?
$-8.2+3.1$
$-6.9+0.45$

- $9.8-4$
$-90.8-0.45$
$-18.02+34.19$
$-6.7+0.25$
- $9.8-4.56$
- $9.8-0.4$
- Whitney uses a number line to work out $4+3.75$

Use Whitney's method to work out the additions.
$\rightarrow 7+0.65$

- $4+3.2$
- $12+4.63$
- $19+8.784$
- Brett is counting back along a number line to work out 20.7-2.5

Use Brett's method to work out the subtractions.

$$
>16.8-2.5>12.9-4.3>14.6-8.05>15.75-8.32
$$

- Work out $8.4+3.42$ using:
- a mental method
- a number line
- the column method.

Which method do you think is best?
Would this be the best method to work out $8.4-3.42$?
Explain your answer.

- Use your preferred method to work out the calculations.

$$
23+4.105
$$

$$
19-0.25
$$

$$
19-17.37
$$

Reasoning and problem solving

For each calculation, decide if you would use a mental method, an informal jotting or the formal written method.

Mental method	Informal jotting	Formal written method

Explain your choices.
Add one more calculation to each column.

Discuss as a class.

Work out the missing digits.

$31.00-1.37$

What mistake has Tiny made?
How could you work out the change from $£ 20$ when you spend $£ 6.99$?

Tiny should have subtracted 10 and then added 0.1

Decimal sequences

Notes and guidance

In this small step, children combine their knowledge of number sequences and decimals to explore decimal sequences.

Given a range of sequences, children look for patterns and use and find simple rules that involve adding or subtracting a decimal each time. It is important to note that they are not expected to generate algebraic expressions at this stage. Children should, however, use the language associated with sequences such as "term" and "rule". They should make predictions about the next term or subsequent terms in a sequence or, given different terms in a sequence, work backwards to find previous terms. Number lines are useful for representing sequences.
This step supports children's understanding of counting in decimals, particularly across an integer, and prepares them for further study of sequences in Year 6

Things to look out for

- Children may make errors when crossing an integer boundary, for example 0.3, 0.6, 0.9, 0.12
- When looking for terms earlier in a sequence, children may use the operation for the rule instead of the inverse operation, for example adding when they need to subtract.

Key questions

- Are the terms increasing or decreasing in value?
- Are the terms increasing or decreasing by the same amount each time? If so, by how much?
- What will the next term in the sequence be?
- What will the \qquad term in the sequence be?
- How can you tell if you need to make an exchange?
- How can you work out the previous term in a sequence? Does it make a difference if the sequence is increasing or decreasing?

Possible sentence stems

- Each term is \qquad than the previous term.

The difference between the terms is \qquad
As the sequence is increasing/decreasing, I need to add/ subtract \qquad to work out the next term.

National Curriculum links

- Read, write, order and compare numbers with up to 3 decimal places
- Solve problems involving number up to 3 decimal places

Decimal sequences

Key learning

- Complete the sequence.

- Complete the number lines.

- Write the rule for each sequence.
- 3.4, 3.6, 3.8, 4
- 3.4, 3.2, 3, 2.8
- 3.4, 3.42, 3.44, 3.46
- 3.4, 3.38, 3.36, 3.34

Work out the next term in each sequence.

- Use the rule to find the missing terms in the sequences.
- Rule: add 0.3
\qquad
- Rule: add 0.25
\qquad 3.75, \qquad
- Rule: subtract 1.1
\qquad
- A library charges a $£ 1.50$ fine if a book is not returned on the due date, and 15 p per day for every day after that.
Use the sequence to work out the fine for a book that is one week overdue.
£1.50, £1.65, \qquad
\qquad
\qquad
- The 1 st term of a sequence is 0.7 and the 3 rd term is 1 What is the 2nd term of the sequence? What is the 5th term?

Decimal sequences

Reasoning and problem solving

Notes and guidance

In this small step, children learn to multiply decimals by 10, 100 and 1,000

Children multiplied integers by 10 and 100 in Year 4 and moved on to multiply by 1,000 in the Autumn term of Year 5. Despite this experience, they may still make the mistake of over-generalising and simply "adding zeros". Concrete resources and stem sentences can be used to enable children to make accurate generalisations about what happens to the digits in a number when they multiply by 10,100 or 1,000 . Representations such as place value charts allow children to physically move plain counters to the left and recognise that all digits move, for example, 1 place to the left when multiplying by 10 . They can also use a Gattegno chart to recognise that multiplying by 10 and " 10 times the size" is the same.

Things to look out for

- Children may assume that they add a zero to the original number when multiplying by 10
- Children may "move the decimal point" instead of recognising that it is the digits that increase in value when multiplying by 10,100 and 1,000

Key questions

- What is the value of each digit in the number?
- How many places to the left do the counters move when you multiply by 10/100/1,000?
- Where would the digits move to if you multiplied the number by 10/100/1,000?
- How many times greater than \qquad is \qquad ?
- If you multiply a number by 10 and then multiply the answer by 10 , how many times greater than the original number is your final answer?

Possible sentence stems

- To multiply by $10 / 100 / 1,000$, I move all the digits \qquad places to the left.
- 10 times greater than \qquad is \qquad
- Multiplying by $100 / 1,000$ is the same as multiplying by 10 ___ times.

National Curriculum links

- Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000

Multiply by 10, 100 and 1,000

Key learning

- The place value counters show 3.2 multiplied by 10

- Can you make any exchanges?
- Complete the sentences.
\qquad multiplied by 10 is equal to \qquad
\qquad is 10 times the size of \qquad
- Use the place value chart to multiply 3.24 by 10,100 and 1,000

Complete the sentence.
When you multiply by \qquad , you move the counters
\qquad places to the left.

- Use a place value chart to multiply the decimals by 10,100 and 1,000
- Mo is using a Gattegno chart to work out 4.9×10

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

$$
\begin{aligned}
4 \times 10 & =40 \\
0.9 \times 10 & =9 \\
\text { So } 4.9 \times 10 & =49
\end{aligned}
$$

Use the Gattegno chart to work out the multiplications.

- 0.6×10
- 2.4×10
- 1.35×10
0.6×100
2.4×100
1.35×100
$0.6 \times 1,000$
$2.4 \times 1,000$
$1.35 \times 1,000$

What patterns do you notice?

- Multiply each number by 10, 100 and 1,000

Multiply by 10, 100 and 1,000

Reasoning and problem solving

Without calculating, write < , > or = to make the statements correct.

Explain your reasoning.

Scott has $£ 4.87$
Tom has 10 times as much money as Scott.
$=$
$<$
$=$
$>$

How much more money does
Tom have than Scott?

Notes and guidance

In this small step, children explore dividing integers and decimal numbers by 10,100 and 1,000 . This builds on their learning from Year 4, where they learned to divide 1- and 2-digit numbers by 10 Children should begin to recognise the links with multiplying by 10,100 and 1,000 and notice the inverse relationship. Concrete resources and stem sentences can be used to enable children to make accurate generalisations about what happens to the digits in a number when they divide by 10, 100 or 1,000 . A place value chart allows children to physically move counters to the right and recognise that all of the digits move, for example, 2 places to the right when dividing by 100. Children can also use a Gattegno chart to recognise that dividing by 10 and "one-tenth of the size" is the same.

Things to look out for

- Children may make errors with zero placeholders, for example $30.4 \div 10=3.4$
- Children may mix up the rules for multiplication and division.
- Children may "move the decimal point" instead of recognising that it is the digits that decrease in value when dividing by 10,100 and 1,000

Key questions

- What is the value of each digit in the number?
- If you divide by $10 / 100 / 1,000$, how many places to the right do the counters move?
- Where would the digits move to if you divided the number by 10/100/1,000?
- How many times smaller is \qquad than \qquad ?
- If you divide a number by 10 and then divide the answer by 10, how many times smaller than the original number is your final answer?

Possible sentence stems

- To divide by $10 / 100 / 1,000$, I move all the digits \qquad places to the right.
- \qquad is one-tenth the size of \qquad
- Dividing by $100 / 1,000$ is the same as dividing by 10 \qquad times.

National Curriculum links

- Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000

Key learning

- Use the place value chart to divide 14 by 10, 100 and 1,000

Complete the sentence.
When you divide by \qquad , you move the counters ___ places to the right.

- Use a place value chart and counters to divide the numbers by 10, 100 and 1,000
- Filip is using a Gattegno chart to work out $5.8 \div 10$

100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009

$$
\begin{aligned}
5 \div 10 & =0.5 \\
0.8 \div 10 & =0.08 \\
5.8 \div 10 & =0.58
\end{aligned}
$$

$$
0.58 \text { is one-tenth the size of } 5.8
$$

Use the Gattegno chart to work out the divisions.

- $42 \div 10$
- $713 \div 10$
$\rightarrow 102 \div 10$
$42 \div 100$
$713 \div 100$
$102 \div 100$
$42 \div 1,000$
$713 \div 1,000$
$102 \div 1,000$

What patterns do you notice?

- There are 100 pence in $£ 1$

Use this fact to convert the amounts from pence to pounds.

- $210 p=£$ \qquad - $132 p=£$ \qquad $\rightarrow 2,456 p=£$ \qquad

Reasoning and problem solving

Amir is working out $4.08 \div 10$

What mistake has Amir made? What is the correct answer?

Mo divides 72 by 1,000
He then multiplies the answer by 10

Explain Mo's method.

Here are three rectangles.

C

The sides of rectangle B are 10 times greater than rectangle A.
The sides of rectangle C are one-hundredth the size of rectangle B.
Work out the side lengths of rectangles B and C.

Do you agree with Rosie?
Explain your answer.

B: 14 m and 9 m
C: 0.14 m and 0.09 m

No

Notes and guidance

In this small step, children apply their knowledge of multiplying and dividing by 10,100 and 1,000 to work out missing values.
Through the use of concrete resources and stem sentences in the two previous steps, children have generalised what happens to the digits in a number when they multiply and divide by 10, 100 or 1,000. They now use these generalisations to support them to find missing values in calculations. Gattegno charts can be used to recognise how many rows a counter has moved up or down, allowing children to work out if the number is 10,100 or 1,000 times greater or smaller. A place value chart allows them to physically move counters to the left or right to work out if the number is 10,100 or 1,000 times greater or smaller. Children should recognise the inverse relationship between multiplying and dividing by 10,100 and 1,000 and use this to find the missing values.

Things to look out for

- Children may mix up multiplication and division and move counters or digits in the wrong direction.
- Children may make errors with numbers that include zero as a placeholder, especially within numbers such as 3.04

Key questions

- What is the value of each digit?
- How many times smaller is \qquad than \qquad ?
- How many times greater is \qquad than \qquad
- How have the values of the digits changed?
- Has the number been multiplied or divided? How do you know?
- In which direction have the digits moved? How many places have the digits moved? What does this tell you?

Possible sentence stems

- The digits have moved \qquad places to the left/right, so the number has been \qquad by \qquad
- The digits have moved \qquad places to the left/right, so the number is \qquad times greater/smaller.

National Curriculum links

- Multiply and divide whole numbers and those involving decimals by 10,100 and 1,000

Multiply and divide decimals - missing values

Key learning

- Use the place value chart to work out the missing value.
$4.23 \times$ \qquad $=42.3$

- Use a place value chart and counters to work out the missing values.
- $3.45 \times$ \qquad $=34.5$
- $84 \div$ \qquad $=0.84$
- $4.56 \div$ \qquad $=0.456$
- $1.03 \times$ \qquad $=103$
- Mo divides a number by 100 and ends up with 0.52

H	T	O	©th	Hth	Thth
			0		
		0	5	2	

What number did Mo start with?

- Work out the missing numbers.
- \qquad $\div 10=4.9$ \qquad $\times 10=0.45$
- $1,000 \times$ \qquad $=273$ \qquad $\div 100=2.103$
\qquad - \qquad
- Dexter uses a Gattegno chart to work out the missing value in the calculation $4.82 \times$ \qquad $=482$

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009

- Complete the sentences.

Each counter moves up \qquad rows to get to 482

482 is \qquad times the size of 4.82
$4.82 \times$ \qquad $=482$

- Use the Gattegno chart to work out the missing values.
$3.4 \times$ \qquad $=34$ \qquad $\div 10=64.5$
\qquad $\times 5.62=5,620$
$1,000 \times$ \qquad $=345$
$4.6 \div$ \qquad $=0.046$
\qquad $\div 100=3.02$
$\square \ldots-10=1.93 \div 100$
\qquad
\qquad $=0.342 \times$

Multiply and divide decimals - missing values

Reasoning and problem solving

