Summer Block 5
 Converting units

Small steps

Step 1	Kilograms and kilometres
Step 2	Millimetres and millilitres
Step 3	Convert units of length
Step 4	Convert between metric and imperial units
Step 5	Convert units of time
Step 6	Calculate with timetables

Notes and guidance

Children first encountered kilograms in Year 3 and kilometres in Year 4. This small step revisits both of these units of measure and their relationships to grams and metres, respectively. Begin by discussing what units of measure are and how different units of measure are used for different purposes. Remind children of what kilograms and kilometres are, discussing examples of when each would be used. Then explain that the prefix "kilo-" always means one thousand, so 1,000 grams is equivalent to 1 kilogram and 1,000 metres is equivalent to 1 kilometre. Bar models and double number lines are useful representations for showing the conversions. Make links to multiplying and dividing integers and decimals by 1,000 , covered earlier in the year.

Children should also be confident with conversions of simple fractions such as $\frac{1}{2} \mathrm{~kg}=500 \mathrm{~g}$ and $\frac{3}{4} \mathrm{~km}=750 \mathrm{~m}$.

Things to look out for

- Children may perform the wrong operation, for example multiplying instead of dividing.
- Children may confuse "kilo-" with "centi-" and use the factor of 100 instead of 1,000

Key questions

- What are units of measure?
- What might you measure using kilograms/kilometres?
- What is the same about kilograms and kilometres? What is different?
- What does the prefix "kilo-" mean?
- How many grams are there in \qquad kilograms?
- How can you convert from kilometres to metres? What is the same and what is different about converting from metres to kilometres?

Possible sentence stems

- 1 kilometre = \qquad m,
so \qquad kilometres = \qquad $\times 1,000 \mathrm{~m}=$ \qquad m
$\ldots \mathrm{g}=1 \mathrm{~kg}$, so \qquad
\qquad $\div 1,000=$ \qquad kg

National Curriculum links

- Convert between different units of metric measure [for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

Kilograms and kilometres

Key learning

- Complete the bar models.

1 km	1 km
m	m

$2 \mathrm{~km}=$ \qquad m

- Write < , > or = to compare the measurements.

- Fill in the missing numbers.
$\rightarrow \frac{1}{10} \mathrm{~kg}=\square \mathrm{g}$
$\frac{3}{10} \mathrm{~km}=$ \qquad m
$\rightarrow 7 \mathrm{~kg}+\frac{1}{4} \mathrm{~kg}=\ldots \mathrm{g}$
- $12 \mathrm{~km}+$ \qquad $\mathrm{km}=12,500 \mathrm{~m}$
- Eva walks $1,750 \mathrm{~m}$ to the bus stop. She then rides on the bus for 5.2 km .

How far has she travelled in total?

- Each cube has a mass of 250 g . How many cubes must be added to balance the scales?

Reasoning and problem solving

Notes and guidance

Children first encountered millimetres and millilitres as units of measure in Year 3. In this small step, they convert between millimetres and metres and between millilitres and litres for the first time.

As in the previous step, begin by reminding children what these units of measure are and what they are likely to be used for. Then discuss the prefix "milli-", explaining that it means one thousandth. Model conversions by multiplying amounts given in litres and metres by 1,000 and dividing amounts given in millimetres and millilitres by 1,000. The use of bar models and double number lines will help children's understanding of these conversions.
Children then move on to converting amounts given in litres and metres, including decimals and fractions. Finally, they use this understanding to solve problems that require conversions between these units of measure.

Things to look out for

- Children may perform the wrong operation, for example multiplying instead of dividing.
- Children may confuse the different prefixes "kilo-", "milli-" and "centi-".

Key questions

- What might you measure in metres/litres?
- What might you measure in millimetres/millilitres?
- What does the prefix "milli-" mean?
- What is the same and what is different about the prefixes "milli-" and "kilo-"?
- How can you convert from litres/metres to millilitres/ millimetres?
- How many litres are equivalent to \qquad millilitres?
- Which is the greatest length, $1 \mathrm{~mm}, 1 \mathrm{~km}$ or 1 m ?
- What unit of measure would you use for measuring ___ ?

Possible sentence stems

- To convert from litres to millilitres, I___ by 1,000
- To convert from millimetres to metres, I \qquad by 1,000

National Curriculum links

- Convert between different units of metric measure [for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

Millimetres and millilitres

Key learning

- Use the bar models to complete the conversions.

1 m	1 m	1 m	1 m	1 m	1 m
mm	mm	mm	mm	mm	mm

11	11	
ml	ml	ml
$2 \frac{1}{2} \mathrm{l}=\ldots \mathrm{ml}$		

- Use the double number line to complete the conversions.
$0 \mathrm{~m} \quad 100 \mathrm{ml} 200 \mathrm{ml} 300 \mathrm{ml} 400 \mathrm{ml} 500 \mathrm{ml} 600 \mathrm{ml} 700 \mathrm{ml} 800 \mathrm{ml} 900 \mathrm{ml} 1,000 \mathrm{ml}$

- Use the fact to help you complete the conversions.

$$
1,000 \mathrm{~mm}=1 \mathrm{~m}
$$

- $5,000 \mathrm{~mm}=\ldots \quad \mathrm{m}$
m
- $500 \mathrm{~mm}=$ \qquad m
- $50,000 \mathrm{~mm}=$ \qquad m
- $5,500 \mathrm{~mm}=$ \qquad m
- Write $<,>$ or = to compare the measurements.

- Fill in the missing numbers.
- $\frac{1}{1000} \mathrm{~m}=\ldots \mathrm{mm}$
- $21+$ \qquad $\mathrm{ml}=2,500 \mathrm{ml}$
- $\frac{1}{100} \mathrm{~m}=$ \qquad mm
- $3\left|+\frac{1}{4}\right|=$ \qquad ml
- $\frac{1}{10} \mathrm{~m}=$ \qquad mm
- $31+$ \qquad $\mathrm{l}=3,400 \mathrm{ml}$
- Brett has a 2 litre jug of juice.

He pours 350 ml of juice into each of three cups.
How much juice is left in the jug?

Millimetres and millilitres

Reasoning and problem solving

5 m of ribbon is shared equally between four friends.

5 m			
mm	mm	mm	mm

No
There are not 100 mm in 1 m .

Lemonade is sold in cans and bottles.

Alex buys 5 cans and 3 bottles. She sells the lemonade in 100 ml glasses to raise money for charity.
She sells all the lemonade.
How many glasses does she sell?
Alex charges 50p per glass.
How much profit does she make?

Notes and guidance

In this small step, children build on their learning in the previous two steps to convert the units of metric lengths - millimetres, centimetres and metres.

Recap what types of things would be measured by each unit of measure, and when each one would be inappropriate, for example measuring the playground in millimetres or measuring a pencil sharpener in metres. Measuring and drawing lines of specific lengths in centimetres and millimetres help with children's understanding of these measures.

Model how to convert between these units. Begin by discussing the difference between milli- and centi-, meaning that they multiply a length given in metres by 100 to convert it to centimetres, and by 1,000 to convert it to millimetres. Then use division to convert the other way. When children are confident with integer values, they can move on to converting fractional and decimal lengths in metres.

Things to look out for

- Children may confuse when to multiply or divide and/or when to use 10,100 or 1,000
- Children may confuse the units of measure or omit them from their answers.

Key questions

- What units of length do you know?
- What objects would you measure with millimetres/ centimetres/metres?
- Which unit of measure would you use to measure \qquad ?
- How many mm/cm are there in \qquad cm / m ?
- How can you convert from $\mathrm{mm} / \mathrm{cm} / \mathrm{m}$ to $\mathrm{mm} / \mathrm{cm} / \mathrm{m}$?
- When do you need to divide/multiply by $10 / 100 / 1,000$?

Possible sentence stems

- There are \qquad mm in \qquad cm.
- There are \qquad mm in \qquad m.
- There are \qquad cm in \qquad m.
- To convert between $\mathrm{mm} / \mathrm{cm} / \mathrm{m}$ and $\mathrm{mm} / \mathrm{cm} / \mathrm{m}$, I ___b y

National Curriculum links

- Convert between different units of metric measure [for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

Convert units of length

Key learning

- There are 10 mm in 1 cm and 100 cm in 1 m .

Use this to help you complete the conversion diagrams.

- Fill in the missing numbers in the conversions.
\qquad
- $10 \mathrm{~mm}=$ cm
- $2 \mathrm{~cm}=$ \qquad mm
- \qquad $\mathrm{cm}=1 \mathrm{~m}$
- \qquad $\mathrm{m}=300 \mathrm{~cm}$
- $55 \mathrm{~mm}=$ \qquad cm
- \qquad $\mathrm{m}=670 \mathrm{~cm}$
- $300 \mathrm{~mm}=$ \qquad $\mathrm{cm}=$ \qquad m
\qquad $\mathrm{mm}=98 \mathrm{~cm}=$ \qquad m
- $5 \mathrm{~m}=$ \qquad cm
- $5.6 \mathrm{~m}=$ \qquad cm
- Here are the heights of four children.

| Esther |
| :---: | :---: | :---: |
| 1.3 m | | Scott |
| :---: | :---: |
| 124 cm | | Aisha |
| :---: | :---: |
| 1.32 m | | 141 cm |
| :---: |

Put the children in height order, starting with the shortest. Write their heights in millimetres.

- Write <, > or = to compare the measurements.

- Line A is 6 centimetres long.

Line B is 54 millimetres longer than line A.
Line C is $\frac{2}{3}$ of line B.
Draw lines A, B and C.

Convert units of length

Reasoning and problem solving

Dexter has a pencil that is 9.5 cm long.

He uses it every day for a week, and it is now 6.9 cm long.

How many millimetres shorter is his pencil now than it was a week ago?

A plank of wood is 5.8 metres long.

Two lengths are cut from the wood.

What length of the plank is left?

A 10p coin is 2 mm thick.
Rosie makes a pile of 10p coins worth $£ 1.30$

What is the height of the pile of coins in centimetres?

2.6 cm

Notes and guidance

In this small step, children are introduced to imperial units of measure and learn to convert between metric and imperial units.

Begin by having a conversation about different units of measure, asking children to name as many as they can. Sort children's suggestions into metric and imperial units. Explain that the metric and imperial systems are different ways of measuring the same type of thing and it can depend on where you are as to which you use, for example road signs in England are in miles, but in France they are in kilometres.

Model exchanging between the units covered in this step: inches and centimetres, kilograms and pounds, and pints and millilitres. It is important to explain the term "approximately" in this context and that the conversions given are not exact. Explain the meaning of " \approx " as "approximately equal to".

When children are confident converting between units, they can solve problems that include both metric and imperial measures.

Things to look out for

- Children may confuse \approx and $=$.
- Children may forget to include units of measure in their answers.

Key questions

- What different types of units of measure do you know?
- How can you sort the units of measure into groups?
- What is the difference between imperial and metric units of measure?
- What does "approximately equal to" mean? What symbol is used to mean "approximately equal to"?
- How can you convert from $\mathrm{cm} / \mathrm{kg} / \mathrm{ml}$ to inches/lb/pints?
- How can you convert from inches $/ \mathrm{lb} / \mathrm{pints}$ to $\mathrm{cm} / \mathrm{kg} / \mathrm{ml}$?

Possible sentence stems

- 1 kg is approximately equal to \qquad lb, so \qquad kg is approximately equal to \qquad \times \qquad $=$ \qquad lb .
- 1 pint is approximately equal to \qquad ml, so \qquad pints is approximately equal to \qquad \times \qquad $=$ \qquad ml .
- 1 inch is approximately equal to \qquad cm, so \qquad cm is approximately equal to \qquad \div \qquad = \qquad inches.

National Curriculum links

- Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints

Convert between metric and imperial units

Key learning

- 1 inch is approximately equal to 2.5 cm .

$$
1 \mathrm{inch} \approx 2.5 \mathrm{~cm}
$$

Use this fact to complete the conversions.

- 2 inches \approx \qquad cm
- 20 inches \approx \qquad cm
\qquad inches $\approx 7.5 \mathrm{~cm}$ \qquad inches $\approx 12.5 \mathrm{~cm}$
- The area of the rectangle is $50 \mathrm{~cm}^{2}$

What is the approximate perimeter of the rectangle in inches?

- 1 kilogram is approximately equal to 2.2 pounds.

$$
1 \mathrm{~kg} \approx 2.2 \mathrm{lb}
$$

Use this fact to complete the conversions.

- \qquad $\mathrm{kg} \approx 4.4 \mathrm{lb}$
- \qquad $\mathrm{kg} \approx 22 \mathrm{lb}$
- $4 \mathrm{~kg} \approx$ \qquad lb
- $100 \mathrm{~kg} \approx$ \qquad lb
- Apples are sold in 2 kg bags.

Huan buys 4 bags of apples.
He uses 2.6 lb of the apples.
What is the approximate mass of Huan's remaining apples in pounds?

- Use the fact to complete the conversions.

$$
1 \text { pint } \approx 568 \mathrm{ml}
$$

- 2 pints \approx \qquad ml
- $\frac{1}{2}$ pint \approx \qquad ml
- \qquad pints $\approx 56.8 \mathrm{ml}$
- \qquad pints $\approx 5,680 \mathrm{ml}$
- There are 8 pints in a gallon.

A class is given 2 gallons of lemonade.
They drink 3 litres of lemonade in total.
About how many millilitres of lemonade do they have left?

1 gallon	1 gallon
pints	pints
ml	ml

Convert between metric and imperial units

Reasoning and problem solving

Notes and guidance

Children have encountered units of time and converted between them in previous years. In this small step, they revisit and extend this learning and solve problems involving units of time.

Ask children to name as many different units for measuring time as they can. Encourage them to think of longer units such as days, weeks, months and years as well as smaller units such as seconds, minutes and hours.

Model the different conversions, many of which, such as days in a week and minutes in an hour, will be familiar from previous learning and everyday experience, but others, such as days in a year or days in different months, may need recapping.
Double number lines are a useful representation to support many of the conversions. Once children are confident converting between different units of time, they can solve problems that involve different units.

Things to look out for

- Children may be confused when converting measures that involve division (for example, days to weeks) if there is a remainder.
- Children may think that time conversions behave like decimals, for example 0.25 minutes $=25$ seconds.

Key questions

- What units of measure do we use for time?
- How can you put the units of measure for time in order from shortest to longest?
- How many seconds/minutes/hours are there in \qquad minutes/hours/days?
- How can you convert from \qquad to \qquad ?
- When using division to convert times, what happens if there is a remainder?

Possible sentence stems

- There are \qquad seconds/minutes in a minute/hour, so in
\qquad minutes/hours there are \qquad \times \qquad =
\qquad
- There are \qquad hours in a day, so in \qquad hours there are
\qquad \div \qquad = \qquad full days and \qquad hours.
- To convert \qquad into \qquad , I \qquad by \qquad

National Curriculum links

- Solve problems involving converting between units of time

Convert units of time

Key learning

- Complete the double number line.

Use the double number line to help work out the conversions.

- 5 hours $=$ \qquad minutes \qquad hours $=600$ minutes
- $\frac{1}{2}$ hour $=$ \qquad minutes \qquad hours $=150$ minutes
- There are 60 seconds in a minute.
- How many seconds are there in 5 minutes?
- How many minutes are equivalent to 630 seconds?
- Sam is boiling an egg.

She wants to boil it for $4 \frac{1}{2}$ minutes, but she accidentally boils it for an extra 45 seconds.
How many seconds does she boil the egg for?

- There are 7 days in a full week.

How many full weeks are there in 23 days?
How many days are left over?

- Complete the table.

Days	Weeks and days
42 days	
	5 weeks and 5 days
	10 weeks and 5 days
100 days	

- Complete the conversions.
- 1 year = \qquad months
\qquad years $=60$ months
- 3 years and 2 months $=$ \qquad months
- \qquad years and \qquad months $=75$ months
- \qquad years $=24$ months
- 2.5 years $=$ \qquad months

Convert units of time

Reasoning and problem solving

Tom is exactly 11 years old.
There have been two leap years in his life.

How many days has Tom been alive?
Convert your answer to hours.
Investigate for other ages.

Three children are running a race.

- Dani finishes the race in 3 minutes and 5 seconds.
- Eva finishes the race in 192 seconds.
- Alex finishes the race in 2 minutes and 82 seconds.

Who wins the race?
Compare methods with a partner.

4,017 days
96,408 hours

Dani

Notes and guidance

Earlier in the year, in the statistics block, children read and interpreted timetables. In this small step, this learning is revisited and extended to include using timetables to solve problems that involve calculations with time.

Begin by recapping what timetables are, their purpose and how they are used. Show different timetables and explain how they show what is happening when. Model how to calculate using a timetable, for example lengths of time between events, how long a television programme is, times between stops on a train/bus journey. These can be challenging, especially when the times cross an hour; a number line can be used to support these calculations.
Children answer questions across a range of different timetables, then think of their own questions that could be answered with the information given in a timetable. Finally, children create their own accurate timetable with information provided.

Things to look out for

- Children may confuse 12 -hour and 24 -hour clock times.
- Children may try to subtract times using the column method, misinterpreting times as decimals.

Key questions

- What information can a timetable give you?
- Why are some parts of the timetable blank?
- How do you convert between times given using 12-hour and 24-hour clocks?
- How long does \qquad take?
- How many minutes are there between \qquad and \qquad ?
- How can a number line help you to find the difference between two times?
- What questions could you ask about this timetable?

Possible sentence stems

- The \qquad train/bus from \qquad takes \qquad minutes to get
to \qquad
- From \qquad to the next hour is \qquad minutes.

From \qquad to \qquad is \qquad minutes.
The total time taken is \qquad $+$ $=$ \qquad minutes.

National Curriculum links

- Solve problems involving converting between units of time

Calculate with timetables

Key learning

- Use Mo's number line to work out how long it is between

07:51 and 09:17

- Use the timetable to answer the questions.

Bus Station	$06: 05$	$06: 35$	$07: 10$	$07: 43$	$08: 15$
Shelf Roundabout	$06: 15$	$06: 45$		$07: 59$	$08: 31$
Shelf Village Hall	$06: 16$	$06: 46$	$07: 25$	$08: 00$	$08: 32$
Woodside	$06: 21$	$06: 50$	$07: 28$		
Odsal	$06: 26$	$06: 55$	$07: 33$	$08: 15$	$08: 45$
Railway Station	$06: 40$	$07: 10$	$07: 48$	$08: 30$	$09: 00$

- Why are some of the times blank?
- How long does it take the 06:35 bus to travel from the bus station to Odsal?
- How long does it take the 08:32 bus to get from Shelf Village Hall to the railway station?
- Use the timetable to answer the questions.

	$14: 01$	$14: 31$	$15: 01$	$15: 31$
Ilkley		$14: 39$	$15: 09$	$15: 39$
Ben Rydding	$14: 17$	$14: 49$	$15: 15$	$15: 49$
Burley in Wharfedale	$14: 12$	$14: 44$		$15: 44$
Menston	$14: 20$		$15: 18$	$15: 52$
Guiseley	$14: 31$	$14: 59$	$15: 29$	$16: 33$
Leeds				

- How long does the 14:01 train from Ilkley take to get to Menston?
- How often do trains leave Ilkley for Leeds?
- How much longer does it take the 15:39 train from Ben Rydding to get to Guiseley than the 15:09 train from Ben Rydding to Guiseley?
- Teddy arrives in Burley in Wharfedale at 2:50 pm.

He wants to get to Leeds.
When is the earliest he will arrive in Leeds?
Ask a partner more questions that can be answered using the timetable.

Calculate with timetables

Reasoning and problem solving

Rosie turns on the TV at 12 noon.
What will be on?
Estimate how long Animals on the Farm lasts.
Between 11 am and 5 pm , how many minutes is the news on for altogether?

Ask a partner more questions that can be answered using the guide.

| Cooking with |
| :--- | :--- | :--- |
| You | \left\lvert\, | 1 hour and |
| :--- |
| 45 minutes |$\quad 90\right.$ minutes

Here is part of a bus timetable.

	$05: 40$	$06: 00$	$06: 20$	$06: 35$	$06: 50$
Trinity Street	$05: 51$	$06: 13$	$06: 33$	$06: 48$	$07: 05$
Marford Hill	$06: 18$	$06: 38$	$07: 00$	$07: 15$	$07: 35$
Chister Business Park	$06: 07$	$06: 25$	$06: 48$	$07: 03$	$07: 20$
Railway Station	$06: 18$				

Mr Khan is getting the train from the railway station at 07:05

- He lives a 9-minute walk from Marford Hill bus stop.
- The train platform is an 8 -minute walk from the railway station bus stop.
- The train journey is 1 hour and 18 minutes.

What time does Mr Khan need to leave his house?
How long will it be from Mr Khan leaving his house to getting off the train?

[^0]
[^0]: 6:04
 2 hours 19 minutes

